skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Becker, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Orthopoxviruses (OPVs), including the causative agents of smallpox and mpox have led to devastating outbreaks in human populations worldwide. However, the discontinuation of smallpox vaccination, which also provides cross-protection against related OPVs, has diminished global immunity to OPVs more broadly. We apply machine learning models incorporating both host ecological and viral genomic features to predict likely reservoirs of OPVs.Wedemonstrate that incorporating viral genomic features in addition to host ecological traits enhanced the accuracy of potential OPV host predictions, highlighting the importance of host-virus molecular interactions in predicting potential host species. We identify hotspots for geographic regions rich with potential OPV hosts in parts of southeast Asia, equatorial Africa, and the Amazon, revealing high overlap between regions predicted to have a high number of potential OPV host species and those with the lowest smallpox vaccination coverage, indicating a heightened risk for the emergence or establishment of zoonotic OPVs. Our findings can be used to target wildlife surveillance, particularly related to concerns about mpox establishment beyond its historical range. 
    more » « less
  2. Abstract Wildlife health comparisons within and across populations and species are essential for population assessment and surveillance of emerging infectious diseases. Due to low costs and high informational yield, hematology is commonly used in the fields of ecoimmunology and disease ecology, yet consistency and proper reporting of methods within these fields are lacking. Previous investigations on various wildlife taxa have revealed noteworthy impacts of the vein used for blood collection on hematology measures. However, the impacts of venipuncture site on bats, a taxon of increasing interest in ecoimmunology and disease ecology, have not yet been tested. Here, we use a long-term study system in western Oklahoma to test the effect of venipuncture site on hematology parameters of the Mexican free-tailed bat (Tadarida brasiliensis) and cave myotis (Myotis velifer), two abundant and representative bat species from the families Molossidae and Vespertilionidae. Between September 2023 and October 2024, we collected paired peripheral blood from both the propatagial and intrafemoral veins in 25 individuals per species. We then quantified total red and white blood cells, reticulocyte counts, and leukocyte differentials and used generalized linear mixed models to compare parameters among venipuncture sites within and between bat species. Overall, venipuncture site had no effect on any hematology parameters; however, we revealed small differences in neutrophil and lymphocyte proportions between veins among the species. By contrast, we detected significant species-level differences in most cell measurements, which we propose could be explained by life-history strategy and phylogenetic differences. We encourage continued testing of additional venipuncture sites, and of the same venipuncture sites on different species, on hematology and other health metrics used in ecoimmunology and disease ecology. Lastly, we emphasize the importance of thorough method reporting in publications to enable transparent comparisons and accounting for even small sampling-based artifacts. All future efforts are especially important for bats to improve conservation monitoring, ecosystem services estimations, and their association with emerging infectious diseases. 
    more » « less
  3. Abstract Understanding wildlife immune responses is crucial for assessing disease risks, environmental stress effects, and conservation challenges. Traditional ecoimmunology approaches rely on targeted assays, which, while informative, often provide a fragmented and species-limited view of immune function. Proteomics offers a powerful alternative by enabling the high-throughput, system-wide quantification of immune-related proteins, providing a functional perspective on immunity that overcomes many limitations of conventional methods. However, proteomics remains underutilized in ecoimmunology despite its potential to enhance biomarker discovery, host–pathogen interaction studies, and environmental health assessments. This Perspective highlights proteomics as a transformative tool for ecoimmunology, disease ecology, and conservation biology. We discuss its unique advantages over other -omics approaches, including its ability to capture realized immune function rather than inferred gene expression, its applicability to diverse wildlife taxa, and its potential for longitudinal immune monitoring of individuals using minimally invasive sampling. We also address key challenges, including limited genomic reference resources, sample constraints, reproducibility issues, and the need for standardized protocols. To overcome these barriers, we propose practical solutions, such as leveraging proteomes of closely related species for annotation and using their annotated genomes as search spaces for peptide mapping. Additionally, we highlight the importance of alternative quality control strategies and improved data-sharing practices to enhance the utility of proteomics in wildlife research. To fully integrate proteomics into ecoimmunology, we recommend expanding public reference databases for non-model species, refining field-adapted workflows, and fostering interdisciplinary collaboration between ecologists, immunologists, and bioinformaticians. By embracing these advancements, the field can leverage proteomics to bridge the gap between molecular mechanisms and ecological processes, ultimately improving our ability to monitor wildlife health, predict disease risks, and inform conservation strategies in the face of environmental change. 
    more » « less
  4. The ability of multiple bat species to host zoonotic pathogens without often showing disease has fostered a growing interest in bat immunology to discover the ways immune systems may differ between bats and other vertebrates. However, interspecific variation in immunological diversity among bats has only begun to be recognized. The order Chiroptera accounts for over 20% of all mammalian species and shows extreme diversity in a suite of correlated ecological traits, such that bats should not be expected to be immunologically homogenous. We review the ecological and evolutionary diversity of chiropteran hosts and highlight case studies emphasizing the range of immune strategies thus far observed across bat species, including responses to SARS‐CoV‐2. Next, we synthesize and propose hypotheses to explain this immunological diversity, focusing on pathogen exposure, biogeography, host energetics, and environmental stability. We then analyze immunology‐related citations across bat species to motivate discussions of key research priorities. Broad sampling is needed to remedy current biases, as only a fraction of bat species has been immunologically studied. Such work should integrate methodological advancements, in vitro and in vivo studies, and phylogenetic comparative methods to robustly test evolutionary hypotheses and understand the drivers and consequences of immunological diversity among bats. 
    more » « less
  5. Palagi, Patricia M (Ed.)
  6. Although the global conversion of wildlife habitat to built environments often has negative impacts on biodiversity, some wildlife species have the ability to cope by living in human-made structures. However, the determinants of this adaptation on a global scale are not well understood and may signify species with unique conservation needs at the human–wildlife interface. Here, we identify the trait profile associated with anthropogenic roosting in bats globally and characterize the evolution of this phenotype using an original dataset of roosting behavior developed across 1,279 extant species. Trait-based analyses showed that anthropogenic roosting is predictable across bats and is associated with larger geographic ranges, habitat generalism, temperate zone distributions, small litter and body size, and insectivory.Weidentified moderate phylogenetic signal in this complex trait profile, which has undergone both gains and losses across bat evolution and for which speciation rates are lower compared to natural roosting bats. 
    more » « less
  7. IntroductionThe long-distance, seasonal migrations of birds make them an effective ecological bridge for the movement of ticks. The introduction of exotic tick species to new geographical regions can cause the emergence of novel tick-borne pathogens. This study examined the prevalence of exotic tick species parasitizing migratory songbirds at stopover sites along the northern Gulf of Mexico using the mitochondrial 12S rRNA gene. MethodsOverall, 421 individual ticks in the generaAmblyomma,Haemaphysalis, andIxodeswere recorded from 28 songbird species, of whichAmblyommaandAmblyomma longirostrewere the most abundant tick genera and species, respectively. A high throughput 16S ribosomal RNA sequencing approach characterized the microbial communities and identified pathogenic microbes in all tick samples. Results and discussionMicrobial profiles showed that Proteobacteria was the most abundant phylum. The most abundant pathogens wereRickettsiaand endosymbiontFrancisella,Candidatus Midichloria, andSpiroplasma. Permutation multivariate analysis of variance revealed that the relative abundance ofFrancisellaandRickettsiadrives microbial patterns across the tick genera. We also noted a higher percentage of positive correlations in microbe-microbe interactions among members of the microbial communities. Network analysis suggested a negative correlation between a)FrancisellaandRickettsiaand, b)FrancisellaandCutibacterium. Lastly, mapping the distributions of bird species parasitized during spring migrations highlighted geographic hotspots where migratory songbirds could disperse ticks and their pathogens at stopover sites or upon arrival to their breeding grounds, the latter showing mean dispersal distances from 421–5003 kilometers. These findings spotlight the potential role of migratory birds in the epidemiology of tick-borne pathogens. 
    more » « less
  8. Emerging infectious diseases, biodiversity loss, and anthropogenic environmental change are interconnected crises with massive social and ecological costs. In this Review, we discuss how pathogens and parasites are responding to global change, and the implications for pandemic prevention and biodiversity conservation. Ecological and evolutionary principles help to explain why both pandemics and wildlife die-offs are becoming more common; why land-use change and biodiversity loss are often followed by an increase in zoonotic and vector-borne diseases; and why some species, such as bats, host so many emerging pathogens. To prevent the next pandemic, scientists should focus on monitoring and limiting the spread of a handful of high-risk viruses, especially at key interfaces such as farms and live-animal markets. But to address the much broader set of infectious disease risks associated with the Anthropocene, decision-makers will need to develop comprehensive strategies that include pathogen surveillance across species and ecosystems; conservation-based interventions to reduce human–animal contact and protect wildlife health; health system strengthening; and global improvements in epidemic preparedness and response. Scientists can contribute to these efforts by filling global gaps in disease data, and by expanding the evidence base for disease–driver relationships and ecological interventions. 
    more » « less
  9. Mukhopadhyay, Suchetana (Ed.)
    ABSTRACT Accumulating data suggest that some bat species host emerging viruses that are highly pathogenic in humans and agricultural animals. Laboratory-based studies have highlighted important adaptations in bat immune systems that allow them to better tolerate viral infections compared to humans. Simultaneously, ecological studies have discovered critical extrinsic factors, such as nutritional stress, that correlate with virus shedding in wild-caught bats. Despite some progress in independently understanding the role of bats as reservoirs of emerging viruses, there remains a significant gap in the molecular understanding of factors that drive virus spillover from bats. Driven by a collective goal of bridging the gap between the fields of bat virology, immunology, and disease ecology, we hosted a satellite symposium at the 2024 American Society for Virology meeting. Bringing together virologists, immunologists, and disease ecologists, we discussed the intrinsic and extrinsic factors such as virus receptor engagement, adaptive immunity, and virus ecology that influence spillover from bat hosts. This article summarizes the topics discussed during the symposium and emphasizes the need for interdisciplinary collaborations and resource sharing. 
    more » « less
  10. Habitat degradation can increase zoonotic disease risks by altering infection dynamics in wildlife and increasing wildlife–human interactions. Bats are an important taxonomic group to consider these effects, because they harbour many relevant zoonotic viruses and have species‐ and context‐dependent responses to degradation that could affect zoonotic virus dynamics. Yet our understanding of the associations between habitat degradation and bat virus prevalence and seroprevalence are limited to a small number of studies, which often differ in the bats or viruses sampled, the study region, and methodology. To develop a broad understanding of the associations between bat viruses and habitat degradation, we conducted an initial phylogenetic meta‐analysis that combines published prevalence and seroprevalence (‘(sero)prevalence') with remote‐sensing habitat degradation data. Our dataset includes 588 unique records of (sero)prevalence across 16 studies, 64 bat species, and five virus families. We quantified the overall strength and direction of the relationship between habitat degradation and bat virus outcomes and tested how this relationship is moderated by the time between habitat degradation and bat sampling and by ecological traits of bat hosts while controlling for phylogenetic non‐independence among bat species. We found no effect of degradation on prevalence overall, although a weak effect may exist when forest loss occurs the year prior to bat sampling. In contrast, we detected a negative but weak association between degradation and seroprevalence overall that was strengthened when forest loss occurred the year prior to bat sampling. No bat traits that we investigated interacted with habitat degradation to impact virus outcomes, suggesting observed trends are independent of these traits. Biases in our initial dataset highlight opportunities for future work; prevalence was highly zero‐inflated, and seroprevalence was dominated byDesmodus rotundusand rabies virus. These findings and subsequent analyses will improve our understanding of how global change affects host–pathogen dynamics. 
    more » « less